3 resultados para High-throughput screening

em Digital Commons - Michigan Tech


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthetic oligonucleotides and peptides have found wide applications in industry and academic research labs. There are ~60 peptide drugs on the market and over 500 under development. The global annual sale of peptide drugs in 2010 was estimated to be $13 billion. There are three oligonucleotide-based drugs on market; among them, the FDA newly approved Kynamro was predicted to have a $100 million annual sale. The annual sale of oligonucleotides to academic labs was estimated to be $700 million. Both bio-oligomers are mostly synthesized on automated synthesizers using solid phase synthesis technology, in which nucleoside or amino acid monomers are added sequentially until the desired full-length sequence is reached. The additions cannot be complete, which generates truncated undesired failure sequences. For almost all applications, these impurities must be removed. The most widely used method is HPLC. However, the method is slow, expensive, labor-intensive, not amendable for automation, difficult to scale up, and unsuitable for high throughput purification. It needs large capital investment, and consumes large volumes of harmful solvents. The purification costs are estimated to be more than 50% of total production costs. Other methods for bio-oligomer purification also have drawbacks, and are less favored than HPLC for most applications. To overcome the problems of known biopolymer purification technologies, we have developed two non-chromatographic purification methods. They are (1) catching failure sequences by polymerization, and (2) catching full-length sequences by polymerization. In the first method, a polymerizable group is attached to the failure sequences of the bio-oligomers during automated synthesis; purification is achieved by simply polymerizing the failure sequences into an insoluble gel and extracting full-length sequences. In the second method, a polymerizable group is attached to the full-length sequences, which are then incorporated into a polymer; impurities are removed by washing, and pure product is cleaved from polymer. These methods do not need chromatography, and all drawbacks of HPLC no longer exist. Using them, purification is achieved by simple manipulations such as shaking and extraction. Therefore, they are suitable for large scale purification of oligonucleotide and peptide drugs, and also ideal for high throughput purification, which currently has a high demand for research projects involving total gene synthesis. The dissertation will present the details about the development of the techniques. Chapter 1 will make an introduction to oligodeoxynucleotides (ODNs), their synthesis and purification. Chapter 2 will describe the detailed studies of using the catching failure sequences by polymerization method to purify ODNs. Chapter 3 will describe the further optimization of the catching failure sequences by polymerization ODN purification technology to the level of practical use. Chapter 4 will present using the catching full-length sequence by polymerization method for ODN purification using acid-cleavable linker. Chapter 5 will make an introduction to peptides, their synthesis and purification. Chapter 6 will describe the studies using the catching full-length sequence by polymerization method for peptide purification.